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Abstract. The modified Born–Oppenheimer equation arising from Berry’s phase is studied
extensively in two physical systems. One is the spin-1

2 neutral particle in the spherically
symmetric magnetic field, the other is the electron in the cylindrically symmetric magnetic
field. The results show the significant topological effects in simple quantum systems.

1. Introduction

Berry’s phase [1] appears naturally in time varying systems where external parameters
are added, but for systems with compound freedoms we may use the modified Born–
Oppenheimer equation (MBOE) arising from Berry’s phase. Typical examples are the diatoms
[2–4].

In this paper, we study theMBOE through two simple physical systems, namely the
spin-1

2 particle moving in a magnetic field. The dynamics for the spin system has been
discussed in various cases [5–9]. Here we explore the two other cases with emphasis on the
physical effects from topological origination. Since these systems have both configurational
and internal freedoms, the most efficient way to study them is by using theMBOE. We
review it first.

Consider a Hamiltonian

H = H0(P ,X)+ h(X,p, r) (1)

whereH0 describes the slow variableX andh the fast variabler, andP and p are the
canonical momenta corresponding toX andr. The wavefunction can be written as

9(X, r) =
∑
m

ψm(X)χm(X, r) (2)

whereχm(X, r) is the instantaneous eigenfunction forh with fixed X. Considering

H0(P ,X) = 1

2M
P 2 + V (x) (3)

where the fast variabler may be a configurational or internal variable, an extensive study
[2, 3] leads to the following matrix-valued Hamiltonian for9m:∑
m

[
1

2M

∑
l

(−iδnl∇X − Anl)(−iδlm∇X − Alm)+ V (X)δmn + εn(X)δmn

]
9n(X)

= E9n(X) (4)
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whereAnl = i〈χn|∂/∂X|χl〉 andεn(X) is the instantaneous eigenvalue forh:

hχn(X, r) = εn(X)χn(X, r). (5)

In the following we study equation (4) in two systems.

2. Neutrons in a spherically symmetric magnetic field

The model is given as [7]

H = H1 +H2

H1 = 1

2M
P 2 + V (r) (6)

H2 = βnσ (7)

which describes a neutron moving in the magnetic field along the directionn = r/r. This
system has been discussed in [7] using an algebraic method, but the whole dynamics remains
unsolved explicitly. We will study it using (4) and give a complete solution in the strong
field limit.

In spherical coordinates, we haven = (sinθ cosϕ, sinθ sinϕ, cosθ), thus the
instantaneous eigenstates of (7) read

χ+(n) =
(

cos(θ/2)e−iϕ/2

sin(θ/2)e−iϕ/2

)
χ−(n) =

( − sin(θ/2)e−iϕ/2

cos(θ/2)eiϕ/2

)
(8)

with the eigenvalues±β respectively. Then Berry’s connection 1-form is defined as
Aij = 〈χi |∂/∂X|χj 〉dX, from which one gets

A++ϕ = cosθ

2r sinθ

A+−ϕ = − 1

2r
A+−θ = −i

2r
A−+ϕ = − 1

2r
A−+θ = i

2r

A−−ϕ = − cosθ

2r sinθ
. (9)

Unfortunately there is a singularity ofAij at θ = 0 orπ . This is unacceptable for such a
spherically symmetric system. To see this, we mention that the state in quantum mechanics
can differ by an arbitrary phase; therefore we take the following gauge transformation
χ ′

±(n) = e−iϕ/2χ±(n) and correspondingly

A′
++ϕ = 1 + cosθ

2r sinθ
A′

−−θ = 1 − cosθ

2r sinθ
(10)

with A′
−+ = A−+, A′

+− = A+−. It should be noted thatA′
++ϕ at θ = 0 andA′

−−ϕ at θ = π

have singularities.
Of course we can take the gauge transformationχ ′′

∓(n) = eiϕ/2χ±(n) and obtain

A′′
++ϕ = −1 + cosθ

2r sinθ
A′′

−−ϕ = −1 + cosθ

2r sinθ
(11)

with A′′
−+ = A−+, A′′

+− = A+−. We again find thatA′′
++ϕ at θ = π andA′′

−−ϕ at θ = 0
have singularities.

However, it is impossible to avoid such a problem. We have to solve it by using the
language of a fibre bundle, because Berry’s connection induces a monopole here. However,
the wavefunction around a monopole should be treated as a section [10]. As a matter of
fact, the singularities in (9)–(11) are superficial, the reason being that the quantum axis
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violates theU(1) symmetry in quantum mechanics. We find that (9) is just Schwinger’s
potential for the monopole, and (10) and (11) are Wu–Yang monopole potential.

Before further discussion, we need to know the curvature for the Berry’s connection;
the matrix-valued connection 1-form reads

A = Aϕσ
ϕ + Aθσ

θ = 1
2 cosθdϕσ3 − 1

2 sinθdϕσ1 + 1
2σ2dθ (12)

where σϕ , σ θ are the coordinate 1-forms asσϕ = r sinθdϕ, σ θ = rdθ . Choosing
Schwinger’s potential here without affecting the physical results, one can deduce the
curvature fromF = dA+ iA ∧ A:

F = − cosθdθ ∧ dϕσ1 − sinθdθ ∧ dϕσ3. (13)

However, the curvature 2-form in spherical coordinates reads:F = Fθϕσ
θ ∧ σϕ =

Fθϕr
2 sinθdθ ∧ dϕ, hence

Fθϕ = − cosθ

r2 sinθ
σ1 − 1

r2
σ3 (14)

with the components

F++θϕ = −F−−θϕ = −F++ϕθ = F−−ϕθ = − 1

r2

F+−θϕ = F−+θϕ = −F+−ϕθ = −F−+ϕθ = − 1

r2
cotθ. (15)

We notice that Berry’s connection is usually non-Abelian without adiabatic approximation.
Using (12), if the wavefunction for the whole system is written as9(t) = 9+(t)χ+ +

9−(t)χ−, we have from (4)

i
∂

∂t

(
9+(t)
9−(t)

)
=

(
H++ H+−
H−+ H−−

) (
9+(t)
9−(t)

)
(16)

where theHij read as

H++ = 1

2M
(P − A++)2 + 1

2M
A+−A−+ + V (r)+ β

H−− = 1

2M
(P − A−−)2 + 1

2M
A+−A−+ + V (r)− β

H+− = − 1

2M
(P − A++)A+− − 1

2M
A+−(P − A−−)

H−+ = − 1

2M
(P − A−−)A−+ − 1

2M
A−+(P − A++). (17)

We see that Berry’s phase provides not only a vector potential but also a scalar potential
A+−A−+. The former has already appeared in the literature, whereas the latter was
explained in [7, 4, 11]. This term is of the order of ¯h2, which is meaningful for the lower
excited states just below our considerations.

To solve (16) is never easy. For a strong enough fieldβ and particles with heavy mass
we can use the Born–Oppenheimer approximation for the lower excited states, where the
off-diagonal terms in (16) are treated as perturbations, namely we neglect the transition
between9+ and9−. We are ready to solve9+ as well as9−.

In the case of the monopole potential, the wavefunction has been solved in [12] as a
section of fibre bundle. We give the result here; the details may be found in [12]:

9+(t) = R(r)Y− 1
2 ,l,m

e−i(E+β)t (18)
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whereY− 1
2 ,l,m

are the monopole harmonics with

l = 1
2,

3
2,

5
2 · · · m = −l,−l + 1, . . . , l (19)

andR(r) satisfies[
− 1

2Mr2

∂

∂r

(
r2 ∂

∂r

)
+ l(l + 1)+ 1

4

2Mr2
+ V (r)− E

]
R(r) = 0. (20)

For any potentialV (r), the solution of (18) can easily be obtained and thus the problem
is completely solved. To see the high-order effects, we can treat (16) by perturbation.

In summary, we have found the non-Abelian gauge structure sections as a fibre bundle
in this simple system, with the dynamics completely solved. We see from (19) that the
angular momentum is quantized in half-integers, which shares a similarity with the isospin–
spin transformation in gauge theory [13]. The spectrum from (20) is nonlinearly arranged, at
least for the lower excited states, which is just the condition for the adiabatic approximation.
All of these originate fundamentally from non-trivial topological structure. We mention that
both (7) and (17) show the singular character of the origin in the coordinate frame. From
(7) the direction of the magnetic field at the origin is not well defined, while from (17) the
effective vector potential should be defined separately in the two parts of the whole space.
The result of this is that we can only obtain sections instead of an ordinary wavefunction.

Another interesting fact is that our result cannot degenerate into the case without the
spherically symmetric magnetic field. No matter how small the magnitude of the field, the
monopole does not change in any respect; meanwhile the angular momentum is quantized
in half-integers because of the monopole. All of these results reflect exactly the topological
origination of the problem.

3. Electrons in a cylindrically symmetric magnetic field

In this section we consider another system

H = 1

2m

(
P + e

c
A

)2
+ µBσB (21)

which describes an electron moving in a magnetic field. For an uniform field, the system
has been solved in [9], but for an arbitrary field it has not yet been solved satisfactorily
[14].

In our case, we study the electron in the plane with a magnetic vortex [15]
and a perpendicular magnetic field. In azimuthal coordinates, we haveB =
(−B sinθ, B cosθ,1), and the vector potential reads

A = 1
2B × r = 1

21reθ − 1
2Brez. (22)

Defining tanξ = B/1, such thatβ = √
12 + B2 = 1 cscξ , we have the eigenstates

σB|χ±〉 = ±β|χ±〉 (23)

|χ+〉 =
(

cos1
2ξe−iθ/2−iπ/4

sin 1
2ξeiθ/2+iπ/4

)
|χ−〉 =

( − sin 1
2ξe−iθ/2−iπ/4

cos1
2ξeiθ/2+iπ/4

)
. (24)

From (24) we obtain the Berry’s connection

A++θ = 1

2r
cosξ A+−θ = − 1

2r
sinξ

A−+θ = − 1

2r
sinξ A−−θ = − 1

2r
cosξ. (25)
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Obviously, it is a pure gauge, i.e.F = dA+ iA ∧ A = 0. Using the same algorithm as in
the last section, we have theMBOE:∑
m

[
1

2M

∑
l

(
δnl

(
−i∇X + e

c
A

)
− Anl

)
×

(
δlm

(
−i∇X + e

c
A

)
− Alm

)
+ εn(X)δmn

]
9m(X)

= E9n(X). (26)

We can rewrite the above equation in the matrix-valued form

i
∂

∂t

(
9+(t)
9−(t)

)
=

(
H++ H+−
H−+ H−−

) (
9+(t)
9−(t)

)
(27)

where the elements read

H++ = 1

2M

(
P + e

c
A − A++

)2
+ 1

2M
A+−A−+ + µBβ

H−− = 1

2M

(
P + e

c
A − A−−

)2
+ 1

2M
A+−A−+ − µBβ

H+− = − 1

2M

(
P + e

c
A − A++

)
A+− − 1

2M
A+−

(
P + e

c
A − A−−

)
H−+ = − 1

2M

(
P + e

c
A − A−+

)
A−+ − 1

2M
A−+

(
A + e

c
A − A++

)
. (28)

In the case of a strong field, and if we only restrict ourselves to the lower excited states, we
can solve (27) using the Born–Oppenheimer approximation, i.e. we neglect the off-diagonal
terms in (27), hence we are able to solve (28) for9+ and9− at zero order. From (28) we
have (e = c = h̄ = 1)

H++ = − 1

2M
∇2 + 1

2M

(
1− 1

r2
cosξ

)
Pθ + 1

8M
β2r2 + 1

8Mr2
+ β − 1 cosξ

4M
. (29)

The wavefunction forH++ can be written as

9+(t) =
∑
n

e−i(En+β−1 cosξ/4M)tfn(r)e
inθ (30)

wherefn(r) satisfies

f ′′
n + 1

r
f ′
n − 1

4
β2r2 − n2 − n cosξ + 1

4

r2
fn + 2ME′

nfn = 0 (31)

with the eigenvalue

E′
n = En − n1

2M
. (32)

If we setνn =
√
n2 − n cosξ + 1

4, then the solution of (31) is

fn(r) = rνne− 1
4βr

2

F

(
−ME

′
n

β
+ 1

2
(νn + 1),

4νn + 3

2
, βr2

)
. (33)

Here F is the confluent hypergeometric function. The asymptotic condition requires the
quantized condition for the energy, namely

−ME
′
n

β
+ 1

2
(νn + 1) = −nr nr = 0, 1, 2, . . . . (34)
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Since we are discussing the spin-up state, the total energy spectrum should be

Enr,n = En + β − 1 cosξ

4M

= E′
n + n1

2M
+ β − 1 cosξ

4M

= 1

2M
(2nr + νn + 1)β + 1

4M
(2n− cosξ)+ β. (35)

Up until now we have solved the problem in the adiabatic limit. The higher-order effects
can be derived from (28) by perturbation, which is outside our present research.

We note that Berry’s connection in this system is a pure gauge. It is well known that
a pure gauge can be eliminated by a gauge transformation in the case of trivial topology,
without affecting any physical results. However, we see that the pure gauge affects the
angular momentum and the energy here because of the non-trivial topology. Our system
is restricted on the plane and the origin of the coordinates frame is a singularity, when the
pure gauge cannot be eliminated continuously.

As a remark, we point out that the adiabatic approximation is the projection of the
total wavefunction to the spin-polarized subspace of the Hilbert space. Finally, the problem
becomes somewhat like a Landau level problem, and it is no surprise that we get a series
of bound states.

4. Discussion

The approach here is less beautiful in mathematical structure than the algebraic approach
of [7], for it is heavily reliant on the wavefunction, but it is clearer in its geometric and
physical origination. Furthermore, theU(1) monopole appeared in theSU(2) representation
in [7], whereas here it appears in theU(1) form by violating theSU(2) Berry’s connection.
A direct result is that we can solve the eigenequation, but it seems difficult to solve the
matrix-valued Hamiltonian in [7] if we still want to preserve a clearly physical picture.

The model in section 3 seems novel; however, in two-dimensional condensed matter
systems, if we consider the effect from an inhomogeneous magnetic field, our results may
have some application.

References

[1] Berry M V 1984 Proc. R. Soc.A 392 45
[2] Moody J, Shapere A and Wilczek F 1986Phys. Rev. Lett.56 893
[3] Bohm A, Kendrick B, Loewe M E and Boya L J 1992J. Math. Phys.33 977
[4] Zygelman B 1990Phys. Rev. Lett.64 256
[5] Aharonov Y and Anandan J 1987Phys. Rev. Lett.58 1593
[6] Tycko R 1987Phys. Rev. Lett.58 2281
[7] Ahronov Y, Ben-Reuven E, Popescu S and Rohrlich D 1990Phys. Rev. Lett.65 3065
[8] Ni G J, Chen S Q and Shen Y L 1995Phys. Lett.A197 100
[9] Johnson M H and Lippmann B A 1949Phys. Rev.76 828

[10] Wu T T and Yang C N 1975Phys. Rev.D 12 3845
[11] Berry M V and Lim R 1991J. Phys. A: Math. Gen.24 60
[12] Wu T T and Yang C N 1976Nucl. Phys.B 107 365
[13] Jackiw R and Rebbi C 1976Phys. Rev. Lett.36 1166
[14] Goldhaber A S 1977Phys. Rev.D 16 1815
[15] March-Russell J, Preskill J and Wilczek F 1992Phys. Rev. Lett.68 2567


